Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 27(10): 283, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36336862

RESUMO

BACKGROUND: Although controversially discussed, paclitaxel is the only clinically proven drug that inhibits restenosis when released from drug-coated balloons (DCBs). Limus drugs are currently being explored as alternatives. The aim of the preclinical studies was to investigate drug candidates beyond paclitaxel considered for balloon coating. METHODS: Drugs were tested with respect to dissolution in organic solvents, coating on balloons, and drug transfer to the vessel wall. Inhibition of neointimal proliferation was tested in the porcine model of coronary in-stent stenosis. Intravascular drug treatment was achieved by DCBs at the time of stent implantation. RESULTS: Coating had to be adjusted for each drug. Doses on the balloons ranged from 1.0 to 8.6 µg/mm2 balloon surface. Satisfactory amounts of drug ranging from 5% to 29% of initial doses were transferred into the vessel wall. Angiographic parameters such as late lumen loss (LLL) at 4 weeks did not show reduction of in-stent neointimal proliferation by treatment with arsenic trioxide (0.87 ± 0.44 mm), betamethasone dipropionate (1.00 ± 0.54 mm), bortezomib (1.74 ± 0.46 mm), green tea extract (1.24 ± 0.51 mm), fantolon, an epothilone (0.86 ± 0.61 mm), methotrexate (1.09 ± 0.72 mm), and thalidomide (1.59 ± 0.55 mm) compared to treatment with uncoated balloons (1.07 ± 0.60 mm), while coatings with paclitaxel reliably reduced in-stent stenosis (LLL = 0.36 ± 0.25 mm). CONCLUSIONS: Despite the proven antiproliferative and/or anti-inflammatory effect of the drugs, none of the coatings significantly reduced LLL compared to uncoated balloons and thus, based on the results presented here, none of the tested coatings may be considered a substitute for the paclitaxel-based coatings currently in clinical use.


Assuntos
Angioplastia Coronária com Balão , Paclitaxel , Suínos , Animais , Paclitaxel/farmacologia , Angioplastia Coronária com Balão/métodos , Constrição Patológica/tratamento farmacológico , Stents , Materiais Revestidos Biocompatíveis/farmacologia , Resultado do Tratamento
2.
Cardiovasc Intervent Radiol ; 45(12): 1822-1831, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36109387

RESUMO

PURPOSE: Clinical data indicate that the drug density on drug-coated balloons (DCBs) might have a role on treatment effect and durability. The aim of the current study was to investigate inhibition of neointimal formation and potential adverse effects after treatment with a novel double-dose DCB in swine. MATERIAL AND METHODS: A four-week study was performed in peripheral arteries of 12 domestic pigs after vessel injury and stent implantation. The novel double-dose DCB with 6-µg paclitaxel (Ptx)/mm2 balloon surface (1 × 6) was compared to a standard DCB with 3.5 µg Ptx/mm2 (3.5) and uncoated balloons (POBA). Potential adverse effects were stimulated by using three fully overlapping DCBs with 6 µg Ptx/mm2 each (3 × 6). Quantitative angiography, histomorphometry and histopathological analyses were performed. RESULTS: Higher paclitaxel doses per square millimeter of treated arteries were associated with reduced late lumen loss (LLL) in quantitative angiography 4 weeks after treatment (POBA: 0.91 ± 0.75 mm; 3.5: 0.45 ± 0.53 mm; 1 × 6: 0.21 ± 0.41 mm; 3 × 6: - 0.38 ± 0.65 mm). In histomorphometry, maximal neointimal thickness and neointimal area were the lowest for the 1 × 6 group (0.15 ± 0.06 mm/1.5 ± 0.4 mm2), followed by 3 × 6 (0.20 ± 0.07 mm/1.8 ± 0.4 mm2), 3.5 (0.22 ± 0.12 mm/2.2 ± 1.1 mm2) and POBA (0.30 ± 0.07 mm/3.2 ± 0.7 mm2). Downstream tissue showed histopathological changes in all groups including POBA, in larger number and different quality (e.g., edema, inflammation, vessel wall necrosis, vasculitis and perivasculitis) in the 3 × 6 group, which did not cause clinical or functional abnormalities throughout the study. CONCLUSION: Treatment with the double-dose DCB (6 µg Ptx/mm2) tended to increase inhibition of in-stent neointimal formation and to diminish LLL after peripheral intervention in the porcine model compared to a market-approved DCB with 3.5 µg Ptx/mm2.


Assuntos
Angioplastia com Balão , Doença Arterial Periférica , Suínos , Animais , Paclitaxel/efeitos adversos , Angioplastia com Balão/efeitos adversos , Materiais Revestidos Biocompatíveis , Artéria Poplítea , Artéria Femoral/diagnóstico por imagem , Neointima , Constrição Patológica , Resultado do Tratamento , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/terapia
3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884903

RESUMO

Balloon angioplasty and stent implantation are standard techniques to reopen stenotic vessels. Often, balloons or stents coated with cytostatic drugs are used to prevent re-occlusion of the arteries. Resveratrol, which is known for its numerous beneficial effects on cardiovascular health, is used as an antioxidant additive on paclitaxel-coated balloon catheters. What is still unclear is whether resveratrol-only balloon coating in combination with a bare metal stent (BMS) also has positive effects on vascular healing. Here, we analyzed neointimal thickening, fibrin deposition, inflammation, vasa vasorum density, and reendothelialization after implantation of BMS via a resveratrol coated balloon approach in a porcine model. In general, resveratrol treatment did not result in significantly altered responses compared to the control group in peripheral arteries. In coronary arteries, an increase in vasa vasorum density became evident three days after resveratrol treatment compared to the control group and abolished up to day 7. Significant effects of the resveratrol treatment on the fibrin score or intima-media area were transient and restricted to either peripheral or coronary arteries. In conclusion, local single-dose resveratrol treatment via a resveratrol-only coated balloon and BMS approach did not lead to adverse systemic or local effects, but also no significant beneficial effects on vascular healing were detected in the current study.


Assuntos
Neointima/prevenção & controle , Resveratrol/administração & dosagem , Vasa Vasorum/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Angioplastia com Balão/efeitos adversos , Animais , Vasos Coronários/efeitos dos fármacos , Modelos Animais de Doenças , Stents Farmacológicos/efeitos adversos , Desenho de Equipamento , Estudos de Viabilidade , Fibrina/metabolismo , Resveratrol/farmacocinética , Suínos
4.
J Endovasc Ther ; 28(6): 938-949, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34278807

RESUMO

BACKGROUND: Drug penetration into the deeper arterial wall of heavily calcified lesions is one of the limitations of drug-coated balloons and drug-eluting stents in vascular interventions. The Temporary Spur Stent (TSS) system is characterized by a self-expanding nitinol stent that is uniformly covered in radialspikes, which, when coated, should allow a deeper penetration and longer retention of the drug into the diseased artery walls by penetrating through the calcified plaques. MATERIALS AND METHODS AND RESULTS: Uncoated TSS and paclitaxel (PTX)-coated TSS systems have been deployed in porcine peripheral arteries. Four weeks after the deployment of uncoated TSS systems, no adverse vascular remodeling or neointimal formation in the treated vessel segments were noticed. PTX-coated TSS systems transferred 9%±7% of the drug that was on the device to the targeted vessel area (196±163 ng PTX/mg arterial tissue) and the addition of the fluorescent dye Nile red to the coating showed that the spikes promote the transfer of the coating to the deeper layers of the vessel wall. The PTX-coated TSS systems showed a significant reduction in neointimal proliferation compared to the uncoated TSS systems: quantitative angiography showed a vessel diameter stenosis of 37.2%±11.0% and 16.4%±8.8% 4 weeks after the treatment with uncoated and PTX-coated TSS systems, respectively. CONCLUSION: The treatment with the TSS system was well tolerated and the spikesfacilitate the transfer of the coating into deeper layers of the vessel wall. Moreover, the PTX-coated TSS systems effectively inhibit neointimal proliferation.


Assuntos
Stents Farmacológicos , Preparações Farmacêuticas , Animais , Artérias , Materiais Revestidos Biocompatíveis , Paclitaxel , Stents , Suínos , Resultado do Tratamento
5.
Int J Cardiol ; 331: 46-56, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33418002

RESUMO

BACKGROUND: Local administration of growth-inhibiting substances such as paclitaxel or sirolimus could reduce the risk of restenosis. In the drug coated balloon (DCB) technology the coating and the applied dose seem to play a major role. The aim of the present preclinical studies was to investigate the efficacy and safety of a specific DCB with paclitaxel as active ingredient and magnesium stearate as excipient. METHODS: Evaluation of the coating, drug release and transfer was done ex vivo and in vivo on peripheral arteries. A porcine coronary stent model was chosen to provoke intimal thickening. Conventional uncoated balloons were compared with paclitaxel urea and paclitaxel magnesium stearate coated balloons. QCA and histomorphometry was performed on treated vessels. Three areas of the heart were histologically examined for pathological changes. RESULTS: QCA and histomorphometry revealed no differences in baseline data between treatment groups. All DCB groups showed a significant reduction of angiographic and histologic parameters describing neointimal formation 4 weeks after treatment (e.g. mean angiographic late lumen loss all coated 0.31 ± 0.18 mm versus 0.91 ± 0.37 mm in the uncoated balloon group). There were no device-related animal deaths or clinical abnormalities. In spite of very slight-to-slight microscopic findings limited to small arterial vessels in downstream tissue there was no change in left ventricular ejection fraction or angiographic presentation of small side branches of treated arteries. CONCLUSION: Paclitaxel DCB using stearate as excipient show a high efficacy in reducing neointima formation after experimental coronary intervention. No evidence of myocardial damage resulting from distal embolization was found.


Assuntos
Fármacos Cardiovasculares , Reestenose Coronária , Animais , Catéteres , Materiais Revestidos Biocompatíveis , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/prevenção & controle , Paclitaxel/efeitos adversos , Ácidos Esteáricos , Volume Sistólico , Suínos , Resultado do Tratamento , Função Ventricular Esquerda
6.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075824

RESUMO

Angioplasty aiming at vascular dilatation causes endothelial denudation and induces complex inflammatory responses that affect vascular healing, including delayed reendothelialization and excessive neointima proliferation. Resveratrol is known for multiple beneficial effects on the vessel wall after systemic treatment or sustained release from a stent. It is also used as an additive on drug-coated balloon catheters (DCB). In this study, the effect of a single dose of resveratrol, three days to four weeks after administration as a balloon coating during angioplasty, was investigated. Sixteen pigs underwent angioplasty with resveratrol-coated or uncoated balloon catheters in coronary and peripheral arteries. Vessels were overstretched by approximately 20% to enhance vessel wall injury and to produce persistent vessel wall irritation. A significantly reduced number of micro vessels and macrophages in the adventitia, as well as an improved reendothelialization of the vessel lumen, were observed in resveratrol-treated peripheral arteries. The coronaries had a much higher injury score compared to peripheral vessels. Resveratrol-dependent reduction of macrophages, micro vessels or acceleration of reendothelialization was not evident in the coronary vessels. Additionally, no significant effect on neointima proliferation and inflammation score in either vessel territory was observed as a result of resveratrol treatment. In conclusion, the results suggest that resveratrol diminishes the inflammatory response and promotes vascular healing in peripheral arteries. These same effects are absent in more severely injured coronary arteries.


Assuntos
Cateteres Cardíacos , Cateterismo Periférico , Materiais Revestidos Biocompatíveis/farmacologia , Vasos Coronários/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Fibrina/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Suínos
7.
Cardiovasc Intervent Radiol ; 41(10): 1599-1610, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29968090

RESUMO

PURPOSE: To experimentally investigate a new homogenously paclitaxel/resveratrol-coated balloon catheter in terms of transport of the coating to the treated tissue and local effects including histology and functional tests. METHODS: Adherence of the coating to the balloon was explored by in vitro simulation of its passage to the lesion. Paclitaxel and resveratrol transfer to the vessel wall was investigated in porcine coronary and peripheral arteries. Matrix-assisted laser desorption/ionization (MALDI) was used for direct microscopic visualization of paclitaxel in arterial tissue. Inhibition of neointimal proliferation and tolerance of complete coating and resveratrol-only coating was investigated in pigs 4 weeks after treatment, and the effect of resveratrol on inflammation and healing after 3 and 7 days. RESULTS: Drug loss on the way to the lesion was < 10% of dose, while 65 ± 13% was detected at the site of balloon inflation. After treatment similar proportions of drug were detected in coronary and peripheral arteries, i.e., 7.4 ± 4.6% of dose or 125 ± 74 ng/mg tissue. MALDI showed circumferential deposition. Inhibition of neointimal proliferation by paclitaxel/resveratrol coating was significant (p = 0.001) whereas resveratrol-only coating did not inhibit neointimal proliferation. During the first week after treatment of peripheral arteries with resveratrol-only balloons, we observed nominally less inflammation and fibrin deposition along with a significant macrophage reduction and more pronounced re-endothelialization. No safety issues emerged including left ventricular ejection fraction for detection of potential distal embolization after high-dose treatment of coronary arteries. CONCLUSIONS: Paclitaxel/resveratrol-coated balloons were effective and safe in animal studies. Beyond acting as excipient resveratrol may contribute to vascular healing.


Assuntos
Angioplastia Coronária com Balão/instrumentação , Angioplastia com Balão/instrumentação , Materiais Revestidos Biocompatíveis , Paclitaxel/farmacologia , Paclitaxel/farmacocinética , Estilbenos/farmacologia , Estilbenos/farmacocinética , Animais , Técnicas In Vitro , Neointima/patologia , Resveratrol , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos
8.
Cardiovasc Drugs Ther ; 30(3): 263-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27033233

RESUMO

PURPOSE: Beyond antiproliferative properties, paclitaxel exhibits anti-inflammatory activity, which might be beneficial in the local treatment of nonocclusive coronary artery disease. Paclitaxel release and tissue concentrations after paclitaxel-coated balloon treatment using different pressures have not been investigated so far. The aim of the study was to investigate in an atherosclerotic rabbit model whether drug transfer from paclitaxel-coated balloons into the vessel wall is affected by the presence of atherosclerotic lesions and to which extent it depends on the inflation pressure used. METHODS: Paclitaxel-coated balloons (3.5 µg/mm(2) paclitaxel) were inflated with pressures of 1, 2, or 6 atm (60s) in healthy (n = 39) and atherosclerotic (n = 22) arteries of New Zealand White Rabbits. Paclitaxel content in arterial walls (10 min after interventions) and paclitaxel remaining on balloons after treatment were analyzed using high-performance liquid chromatography. RESULTS: Median paclitaxel tissue concentrations were 829.3 µg/g (IQR 636.5-1487 µg/g) in healthy and 375.7 µg/g (IQR 169.8-771.6 µg/g) in atherosclerotic arteries (p = 0.0002). The paclitaxel tissue concentration was dependent on inflation pressure (1 atm vs. 2 atm vs. 6 atm) in atherosclerotic arteries (p = 0.0106) but not in healthy arteries (p ≥ 0.05). CONCLUSIONS: Atherosclerotic lesions impede the transfer of paclitaxel into arterial walls. Higher inflation pressures resulted in an increased paclitaxel transfer in atherosclerotic but not in healthy arteries. However, it is assumed that the tissue concentrations achieved with an inflation pressure of 2 atm are potentially effective in this model.


Assuntos
Anti-Inflamatórios/administração & dosagem , Doença da Artéria Coronariana/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Paclitaxel/administração & dosagem , Animais , Anti-Inflamatórios/farmacocinética , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Masculino , Paclitaxel/farmacocinética , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...